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A system belonging to the dynamic universality class of model A is considered 
in a block ( V = L d) geometry with periodic boundary conditions. The relaxation 
of the order parameter rn(t) from an initial value m ~i) is investigated at the bulk 
critical temperature. We demonstrate that a proper scaling description of the 
problem involves two characteristic times, tL~ L z and ti~ [m ti)] z/x,, where z 
is the familiar dynamic bulk exponent, while xl is an independent new bulk 
exponent discovered recently. Previous analyses of the problem either were 
restricted to t >> ti, or tacitly used the incorrect assumption that x~= fl/v. Thus 
the short-time regime t ,r t i with universal dependence on m I~ was missed. As a 
concrete example we study the exact solution in the large-n limit. 
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1. I N T R O D U C T I O N  

Cons ide r  a macroscop ic  fe r romagnet  at a t empera tu re  T sl ightly above  
its Cur ie  t empera tu re  Tc and  in zero magne t ic  field H. Assume that  
this f e r romagne t  is b rough t  into a nonequ i l ib r ium state such tha t  the 
magne t i za t ion  densi ty  re(x, t) at ini t ial  t ime t o = 0  has the init ial  value 
m ~ i ) ( x ) - m ( x ,  to). F o r  simplici ty,  we will take  the init ial  (coarse-gra ined)  
densi ty  to be uniform, so tha t  m( i )_  = m(i)(x) coincides with the init ial  value 
m(to)  of the bulk  o rde r  p a r a m e t e r  m( t )  ( to ta l  magne t i za t ion  per  unit  
volume).  Such an init ial  conf igura t ion  can  easily be p repa red  in compu te r  
s imulat ions.  In  real  exper iments  this could  be achieved by  first p repa r ing  
the system in a the rmal  equi l ib r ium state at  a t empera tu re  T; > Tc and  a 
magne t ic  field Hi  > 0 and  then rap id ly  changing  these t h e r m o d y n a m i c  fields 
to values T =  Tc and  H =  0. Suppos ing  the system is ergodic  and  satisfies 
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the usual requirements of detailed balance and relaxation toward thermal 
equilibrium, it will evolve from this initial state toward the unique Gibbs 
state pertaining to the given values of T and H. Accordingly, m(t) must 
relax to zero. To simplify our subsequent considerations, we shall restrict 
our attention to ferromagnets whose critical dynamics belongs to the 
universality class of the n-component model called A in the Halperin- 
Hohenberg-Ma classification. (1) A well-known example with n =  1 is the 
fully anisotropic Heisenberg ferromagnet. 

For a long time the accepted picture of the ensuing relaxation process 
was the following. (2 6) For times up to a microscopic time scale tmic, the 
behavior of m(t) (as of other quantities) depends on microscopic details 
and is thus nonuniversal. On the other hand, in the extreme long-time 
regime t > t~, the order parameter decays as m ( t ) ~  exp( - t i t s )  in a univer- 
sal fashion (up to scales). This exponential decay defines the so-called bulk 
relaxation time t~, which varies as 

t ~ ~ ~  ~ (1) 

near criticality, where z =-- ( T -  To)IT c while z and v are the usual dynamic 
bulk exponent and the correlation-length exponent, respectively. Finally, 
for times sufficiently tong compared with tmic but small compared to t~, 
there is a regime of nonlinear relaxation characterized by algebraic time 
decay of properties, such as the behavior m(t), ,~t ~/vz of the order 
parameter. 

Recently, Janssen eta / .  (7) have called attention to the fact that there 
exists another regime in which the behavior is universal. They showed that 
the initial magnetization m~~ provides a further time scale ti, which 
varies as 

ti ,-~ [m ~~ ] -~/~ (2) 

on long scales, where x;, the scaling dimension of m ~~ is a new critical 
exponent. For given not too large initial magnetization m ~~ and sufficiently 
small reduced temperature z, one has tmi c'~ t i~  t~. Hence there is a time 
regime tmic~ t < t i .  As shown by Janssen et al., (7) this features a universal 
dependence of quantities on the initial conditions. Specifically for the order 
parameter, this universal stage is marked by an increase of the form 

m(t) ~ t ò  (3) 

with 0' > 0. This phenomenon, which somewhat contradicts naive expecta- 
tion, was termed critical initial slip by Janssen et al. (7) It can be understood 
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by a careful analysis of the dependence on initial conditions and their 
behavior under renormalization-group transformations. The underlying 
reason is that m/i/ has an independent scaling dimension x;; this is 
generally different from xo=-~/v, the scaling dimension of the order 
parameter in thermal equilibrium, with which m(t) scales at large times. 
Simple scaling considerations (see below) or more sophisticated techni- 
ques (7) yield the relation 

0'= (xi-xO)/z (4) 

Hence the initial rise (3) simply corresponds to the fact that xi > xo for the 
type of systems considered. As can be seen from these considerations, initial 
conditions are in many respects similar to boundary conditions at surfaces 
for continuum field theories in bounded geometries. (8) The short-time 
singularity (3) is the analog of a short-distance singularity of the order- 
parameter profile near the surface of a semi-infinite system. By analogy 
with the mechanism producing the former singularity, the latter can be 
traced back to the fact that the magnetization densities at the surface and 
infinitely far away from it have distinct scaling dimensions. Let us also note 
that the problem of initial conditions arises just as well in a variety of other 
contexts, which have been studied by a number of authors. (9-13) 

In the present paper we will investigate the relaxation process 
explained above in a system of finite spatial extent. Our aim is to incor- 
porate a proper treatment of the initial condition into the theory of relaxa- 
tion in finite-size systems. Previous analyses of relaxation in such systems 
were either restricted to those long-time regimes in which all dependence of 
physical quantities on the initial condition has already been lost, or 
assumed the scaling dimension x~ for m (i), thus missing the initial-slip 
stage.(14) 

The remainder of this paper is organized as follows. In the next section 
we introduce the model and discuss briefly how its field theory can be 
defined, recalling, in particular, how the initial condition may be 
implemented within the framework of a functional-integral formulation of 
the theory. In Section 3 a phenomenological scaling approach is applied to 
the relaxation process. The scaling expressions for the magnetization are dis- 
cussed, the relevant time scales are identified, and the various asymptotic 
regimes are described. In Sections 4 and 5 the phenomenological results are 
confirmed by means of an explicit field-theoretic calculation. We choose the 
large-n limit of the n-vector model because in this case exact, largely 
analytic results can be derived. 
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2. T H E  M O D E L  

We consider a continuum field theory on the d-dimensional interval 
V= [0, L ] a c  Na whose dynamics is defined by the Langevin equation 

t ) =  t) (5) 
6~b(x,t) 

with the Ginzburg-Landau Hamiltonian 

(6) 

where ~b=(~b~) is an n-component field, while ~= (~ )  is a Gaussian 
random force with mean zero and variance 

( ~ ( x ,  t) ~a(x', t ')> = 226=~ 6(x - x ' )  D(t -  t') (7) 

We have scaled the coupling constant g by n in order to make the model 
well defined in the limit n ~ m. Periodic boundary conditions will be 
assumed in all d coordinate directions, so that the topology becomes that 
of a d-torus. 

The above equations define model A in a finite block geometry. This 
has been analyzed previously. (15 17.14) It satisfies the standard requirements 
of causality, detailed balance, and relaxation toward thermal equilibrium 
for models of critical dynamics. Accordingly, its stationary state is 
described by the Bolzmann factor e x p ( - ~ ) .  

We wish to study the relaxation from an initial state, which we specify 
through a probability measure 

= [ I  (8) 
x 

for the field ~b(i)(x) = ~b(x, to). On physical grounds one would choose a 
distribution Px centered around m (') with some width w, e.g., 

Px(~o) = (2~zw) - 1/2 e -  (~ - m(i))2/2w (9) 

However, Janssen et al. (7) have shown that w corresponds to an irrelevant 
variable. Hence we may let w approach its fixed-point value 0, so that Px 
becomes a 6-function. 

In order to apply field-theoretic methods, it is convenient to use the 
path-integral representation (18) of the Langevin equation (5). With the 
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imaginary-valued response field denoted by 3, the generating functional of 
connected response and correlation functions takes the form 

~#/'{Y, J } : l n  f @(i~, ~b)exp I - J { ~ ,  ~b}- ~{~b(/)} + fo dt fv(J~+ Y~)] 

where the action functional is given by 

;o ] 
and 

(lo) 

(11) 

~{~b (i) } = - l n  Px + const fv [~b(x, 0 ) -  m(i)] 2 (12) 

is the contribution from the probability distribution of initial values. The 
functional measure N(i~, ~b), which in symbolic notation is proportional to 

1-[ [i d~(x, t)d~b(x, t)] 
x,  t 

is understood to be defined using a prepoint discretization with respect to 
time. 

The generating functional ~o{Y, J} of the Gaussian theory with g = 0 
is well defined and can be computed in a straightforward manner. The 
result is (7) 

%{Z J} = at dc [�89 Co(t, c) J(C) + J(t) 6o(t, c) Y(c)] 

+ fo dt[J(t) Go(t, O)m (i)] (13) 

where we have used a condensed notation in which Co and Go or J and Y 
are viewed as matrices or vectors, respectively, both with regard to compo- 
nent indices and position variables x. The explicit expressions for the free 
propagators Co(t, t')=- (~(t) ~b(t') ) c and G(t, t')=- (O(t) ~(t') ) c (where C 
means cumulant or connected) will not be needed here. They may be 
gleaned from ref. 7, noting that the momentum-space results given in its 
Eqs. (3.5a) and (3.6a) for the infinite system carry over to the present finite- 
size case, except that the wavevectors q now are restricted to the discrete 
values q = (2rc/L)m, m e 7/a (see also the analogous expressions presented 
in Section 4 for the full theory in the limit n ~ oe). 
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To define the generating functional of the full theory, we use 

~#:{Y, J} =ln[exp(-~nt{6/6Y, 6/6J})exp(~Ko{Y, J})]  (14) 

where ~nt{~, ~b } is the interaction part of J ,  and we regulate the ultraviolet 
singularities of the resulting perturbation series by means of a cutoff A, 
restricting the allowed momenta to values with ]ql ~< A. 

Before we embark on details of the exact relaxation analysis in the 
limit n ~  o% let us first discuss the problem on the level of the 
phenomenological scaling theory. 

3. P H E N O M E N O L O G I C A L  S C A L I N G  A N A L Y S I S  OF 
R E LAXATIO N 

Choosing the ~ =  1 axis along the uniform initial magnetization 
density m (~ we have 

(~b,(x, t ) )  = ~ nl/Zm(t) (15) 

where the right-hand side is independent of x by translational invariance. 
Let us assume that d is less than d* =4,  the upper critical dimension, 
so that hyperscaling is valid and xo = fl/v. In accordance with familiar 
renormalization-group ideas for systems of finite size (19) and ref. 7, it is then 
natural to assume that sufficiently close to criticality we have 

m(t, z, L, m (i), g )~  Cml-/3/~m*(l-zCtt ,  ll/vc~z, I-IL,  IxiCim (0) (16) 

where l >> 1 is the spatial rescaling factor and m* means m with all irrele- 
vant scaling fields set to zero. (In particular, g is set to its fixed-point 
value g*.) The metric factors Cm, Ct, C~, and Ci are the only nonuniversal, 
system-dependent parameters; the function m* is universal. In this section 
all dimensionfull quantities are assumed to be scaled by appropriate 
powers of a momentum scale/~ and a frequency scale ,~, respectively. 

Upon choosing l = L one arrives at the scaling expression 

m(t, z, L, m (i)) "~ CmL r L1/vC~z, LxiCzm (0) (17) 

where we have suppressed the variable g on the left-hand side. The function 
has a finite and nonzero limit 

~ ( y , ,  y~) -  lim ~ ( y , ,  y~, yz) (18) 
y ~ 0  + 

At bulk criticality ( T =  T~, with H =  0), (17) reduces to 

rn~(t, L, m (~)) ,~ CmL B/~c(L ~C,t, L~C~m (~)) (19) 
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In order to exhibit the various time scales, one can rewrite (17) in the 
equivalent form [corresponding to the choice Y = (C~t) ~/z in (16)] 

m( t, z, L,  m (~ .~ Cm( C~t ) -~ /~  Yf ( t/t~, t / t  L, tits) (20) 

with 

and 

t v ~-- C t 1 ( C ~ 7 2 )  -]3/vz (21a) 

tL = C 7 1 L  ~ (21b) 

ti = CTX[Cim( i ) ]  z/x, 

By analogy with above, the limit r ~ 0 + can be taken in (20) since 

~r (o~, 0 3 -  ~(0 +, 0~, 0,) 

(21c) 

(22) 

exists and is nonvanishing. 
We can also take the bulk limit L ~ oo in (20). This yields the scaling 

expression 

mb(t, z, m (i)) ~ C m ( C t t ) - ~ / ~ f b ( t / t  ~, t/ti) 

for the bulk magnetization mb, where 

(23) 

Xb(0~, 0~) = lim ~f(0~, 0L, ~)  (24) 
OLeO + 

(25) 

At bulk criticality this becomes 

mbc( t, m (i)) ~ Cm( C~t ) - ~/~zY@( t/ ti) 

~bc(0~) =- lim 3fb(0~, Oi) (26) 
~gr ~ 0 + 

with 

In general, attention must be paid to the order of limits. However, in this 
case we expect the limiting function 2~bc(~i) to agree with Y'eb(3;) = 
limoL ~ o+ ~(0t~, Oi). 

In order that mbc ~ m (~ as t ~ 0, the scaling function Xbc must have a 
short-time singularity of the form 

~'bc(I.~i) ,9, ~0+ ~fbci(t.~ i) xi/z ( 2 7 )  
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where 5(b~ is a universal constant. As discussed by Janssen et aL, (7) this 
short-time singularity can be corroborated by means of an operator- 
product expansion analogous to the one used to determine the behavior of 
the order-parameter profile in semi-infinite systems at short distances from 
the surface. (2~ 

For the explicit computational analysis presented in Sections 4 and 5 
still other, yet equivalent, scaling forms of m c and mbc will be most con- 
venient for studying the influence of the initial condition at bulk criticality. 
The forms we shall prefer there are 

m~( t, L, m (~)) ,.~ Cm( Cim(i)) #/~xi ~ (  t/t~, t~/t L) (28) 

and 

mbo( tm (i)) ~ Cm( f im(i)) #/vxi Lrbo( t/ti) (29) 

where ~bc(~9i) = -- ~(~9/, 0+), while tL and t~ are given in (21b) and (21c), 
respectively. 

Previous scaling analyses (14'~5'3 5) have focused on regimes with 
O~-  t/t~ >> 1. To make contact with these, we need the corresponding 
limiting behavior of the scaling functions ~t and 5(. Upon taking the limit 
t ~  0 (i.e., m(~ ~ )  with the other variables fixed, we see that this is 
described by the scaling functions 

and 

~ y~)= lim ~ y~, Yi) (30) 
y i  ~ oo  

5(~(0~, ~L)-- lim 5((0~, OL, ~9;) (31) 

respectively, where in accordance with all previous work cited above, we 
take it for granted that these limits exist. In 5(~, the bulk limit can again 
easily be taken to obtain the scaling function 

5(b~(~9~)- 5((~9~, 0 +, ~ )  (32) 

whose limiting behavior at small and large values of ~9~ is given by 

lim ~fb~(Oz)~-'~cboo (33) 
~r ~ 0 + 

and 

e sr (34) 
~boo  O t t o  0 

respectively. 
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We are now ready to discuss the various asymptotic regimes. At bulk 
criticality, the system has two characteristic (macroscopic) time scales, ti 
and tc as defined above. As a consequence, we have to distinguish between 
two main asymptotic types of relaxational behavior according to whether 
t i~  tL (case I) or t~>> tL (caseII). 

Case I may be called asymptotic bulk case, as finite-size effects become 
important only for late times. The initial-slip stage m e ( t ) ~  t o' for t ,~ t~ is 
followed by a crossover at time t ~ t / t o  the bulk behavior in the regime 
ti ~ t ~ tL, in which the magnetization decays as mc(t  ) ~ t -~/vz. In the latter 
regime any trace of the initial conditions has been lost. Finally, at t ~ to, 
the system crosses over to the usual finite-size relaxation behavior 
mc(t )  .,~ exp( - t/tL). 

Case II will be called the asymptotic finite-size case, as finite-size 
effects are important during most of the relaxational process. Only for very 
early times, when t is much less than tL, do we expect to see initial-slip 
behavior, governed by the bulk exponent 0'. For  t .~ to, the system enters 
a new universal regime, where we expect to find essentially exponential 
decay of the magnetization with yet unknown dependence on the initial 
conditions. 

4. S H O R T - T I M E  BEHAVIOR IN BULK SYSTEM 

In the following we concentrate on the large-n limit of the n-vector 
model at the bulk critical temperature. First we derive in this section results 
for the infinite-volume limit, some of which were partly derived in ref. 7. 
Afterward these will be extended to the finite-size case. In the limit n --* 
all higher-order cumulants factorize into products of two-point functions. 
Thus the model becomes Gaussian with a time-dependent shifted tem- 
perature z(t).  

The self-consistent set of equations that determines r(t) and re(t)  and 
which will be solved exactly below reads 

Otm(t)  = -- 2z ( t )  m ( t )  (35) 
and 

g 
z ( t )  = -7 [C(t)  - C ( ~ )  + m2(t)] 

13 
(36) 

where 

A c(t)= I. ddq (37) C(q;  t, t) with = (2~) d Iql <4 
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Since we are mainly interested in the time dependence for the moment, all 
arguments of m(t) except t are omitted. The (Fourier-space) correlation 
function C(q; t, t) is related to the response propagator by 

C(q; t, t')= 22 dt" G(q; t, t") G(q; t', t") (38) 

and the response propagator is given by 

{ ;: } G(q; t , t ' )=O( t - t ' ) exp  - 2 ( t - t ' ) q 2 - 2  dt" r(t') (39) 

Known general properties of the model (detailed balance, etc.) ensure that 
the system must relax in the limit t ~ Go toward the thermal equilibrium 
state. In the present case this is the critical state. Hence the requirement 
that m2(oe)= z (oe )=  0 implies the choice C(oo)=  ~A l/q2 in (36). 

When Eqs. (35) and (36) are combined, z can be eliminated, and one 
obtains a linear integrodifferential equation for f ( t ) -  1/m2(t) that can be 
solved by Laplace transformationJ 2~) The result for the Laplace transform 
f(s)  =- ~ dt e-Stf(t) can be written as 

slim(i)] 2 + 2g/3 ~  
f ( s ) =  i + (g--~A(S--~)  ~ (40) 

with 

IA(a ) = (41) q2(q2 + a) 

The integral IA(a) with a > 0  is finite in dimensions d >  2, whenever 
A < oe. Furthermore, it has a finite limit A ---, o% if d < 4 .  For  2 < d < 4 ,  one 
has 

IA(a ) = A~a-~/2 _ A -~Kd g~(a/A2). (42) 

Here e -= 4 - d, 

1 F A~=-~Ka ( d 2 2 )  F ( ~ 2 d ) = - ( 4 z ) - d / 2 F ( ~ 2 d )  (43) 

and K d means as usual the surface area of a d-dimensional unit sphere 
divided by (2r0 a. The cutoff-dependent part depends on the specific cutoff 
procedure employed; for our (sharp-cutoff) procedure we find 

g~(a/A 2) = (l/e) 2F1(1, e/2; 1 + e/2; --a/A 2) (44) 
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where 2F~ is the hypergeometric function. In the infrared regime of interest 
~=- s/22A 2 ~ 1, we may use the expansion 

g~(~) = 1 [1 + O(~)] (45) 

Substitution of these results into (40) yields for small g the behavior 

f (s=~22A2)=fas(s)[l+C~(u-u*)~'/2+O(g")] (46) 

with 

)Tas(s)=(22 ) 1A 4+eAel~-2+~/z(1-k-Ou~A2-~/[m(i)]2), Ou=6/U (47) 

and u * =  6e/Kd, where u is the dimensionless coupling constant 

u -  gA ~ (48) 

while Du and C, = Kd/(uA~e) are nonuniversal constants. 
These results exhibit several expected features. First, the asymptotic 

part fas takes a scaling form, which is universal up to nonuniversal (i.e., g 
and A dependent) metric factors. The fact that m (i) enters in the combina- 
tion ~/[m(i)] 2 tells us that the exponent z/x~ introduced in (2), which 
describes how t -1 and hence s scales with m (~), is to be identified as 
Z/Xg = 2. Use of the familiar value z = 2 of the dynamic exponent z then 
yields 

xi = 1 (49) 

Second, the leading corrections to scaling are down by a factor s o/z with 
co = e, the value of the correction-to-scaling exponent co known from the 
static theory. Third, the corrections to scaling are seen to vanish for the 
special value u = u*. 

In order to make contact with the work of Janssen eta/., (7) it will be 
helpful to indicate how these findings can be phrased in the language of 
renormalized field theory. As usual, the critical behavior of f (s)  can be 
extracted by studying the limit A--* or. Yet this limit cannot be taken 
naively, because A not only serves as a cutoff, but also is the only inverse 
length remaining at criticality. To disentangle these two distinct roles of A 
in renormalized field theory, one introduces an arbitrary reference momen- 
tum # and reparametrizes the (cutoff-) regularized bare theory such that a 
meaningful renormalized theory results in the limit A ~ oe. In the present 
case, the order-parameter field ~b(x, t > 0) scales with its naive dimension 
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( d - 2 ) / 2  and hence needs no reparametrization. However, the scaling 
dimension of m ~~ differs from its naive one; Writing 

d -  2 + q, (50) 
x i -  2 

we see from (49) that the anomalous dimension q~/2 is given by 2 

~ =~ (51) 

Accordingly the renormalized initial magnetization [m(0]r~n should be 
introduced through a reparametrization of the form 

mIiJ= Zff2[m(i)]ren (52) 

with a renormalization factor Zi = Zi(u, A/~t) that varies as 

Z~ ,.~ (#/A) ~ (53) 

in the large-cutoff limit. With such a reparametrization the renormalized 
theory yields the asymptotic expression for f(s) given in (47), except that 
[m~)]~,  appears in place of m (~) and the reference unit is # rather than A. 
These findings are in conformity with those of Janssen eta/. (7) 

In the following we will ignore corrections to scaling, using the 
asymptotic scaling form (47) of f (s ) .  For  notational simplicity, we set the 
momentum unit A in (47) equal to one. The Laplace backtransform of this 
equation can be computed analytically with the result 

F( l~- /2 )~  1/2 m (~ (22t) ~/4 ~1 + 42 ) -1/2 
rnb~(t)=[ A~ D~ J (. D~(2-~) t [m( i ) ]2~  (54) 

Recalling the well-known n = ~ values fl = 1/2 and 1Iv = 2 - e of the static 
critical exponents, one sees that the magnetization mbc(t) has indeed the 
scaling form (29). A convenient choice of the nonuniversal time scale ti is 

D u ( 2 - a  ) 1 
t i -  42 Iraqi)] 2 (55) 

Upon appropriate normalization of its amplitude, the scaling function ~bc 
becomes 

zrbc(o,)  = 0;/4 
(1 + ~9,) '/2 (56) 

2The exponent qi introduced here differs from the exponent q0 used by Janssen et al/7~ 
The latter exponent is twice the anomalous dimension of ~1,-o, the initial response field, and 
related to ql via qo=4-2z-q-qi,  i.e., qo= -~7~ in the n= ~ case studied here. 
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According to the phenomenological scaling theory of Section 3, ~ebc should 
vary as O ~ --* 0. The n = oe value e/4 of 0' obtained here is in conformity 
with (4) and the n =  oe value (49) of x~. Likewise, the exponent that 
governs the asymptotic behavior of Lrb~ ~ ~ J / ~  for large 3~ is seen to take 
its familiar n ~ oe value ~/vz = (2 - e)/4. 

These findings confirm that the order parameter runs through two 
universal regimes during the relaxation process. In the early stage, t ~ t~, 
the initial-slip behavior rnb~(t)~ (t/ti) ~ is observed. Then the process 
crosses over to the familiar long-time behavior mbe(t ) ~ t ~/~, thus losing 
its dependence on the initial magnetization. 

5. F INITE-SIZE RESULTS 

Having discussed the bulk case, we next wish to extend the above 
analysis to the finite-size case L < oe. As before, we restrict ourselves to 
studying the relaxation process at the bulk critical point. Owing to the 
simple hypercubical geometry with periodic boundary conditions chosen 
in (6), the set of self-consistent equations one obtains in the limit n --, co 
remains to be given by (35)-(39), except that the momentum integration ~ 
is to be replaced by a sum Zq over discrete momenta q = (2n/L)m with 
m E Z d (and Iq[ < A). The mass counterterm used in (36), namely the bare 
equilibrium mass at the bulk critical point, remains the same. This implies 
that, at bulk criticality, ~(t) is positive for finite L and t ~  o% and 
approaches zero for L -~ oo. 

The sum over discrete modes may be conveniently rewritten with the 
aid of Poisson's identity 

L --51 ~ ( 27r ) 1 L _  ~ d 6  q -  m = - -  ~ exp( iq 'mL)  (57) 
(2~) a m ~  m ~ 2  ~d 

Using this together with the results of the previous section, one can easily 
solve for y(s), the Laplace transform of the squared inverse magnetization. 
The result is equivalent to the replacement (,) e',m  

IA ~-~ + IA ~-~ + ~ (q2 + s/22) (58) 
m E Z d \ { 0 }  

in (40). From it the asymptotic form o f f ( s )  follows in a straightforward 
fashion. Ignoring corrections to scaling and setting again the momentum 
unit/~ (or A) equal to one, we find 

fas(S) = (2)~A~) i t 4  e D,/L2[m"~] 2 + 22/sL2 
h(sL2/22 ) (59) 
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where 

h ( x ) = x  1 ~ / 2 + [ - F ( - - l + g / 2 ) ] - I  d~'c 2+*/2g('c) e x~ (60) 

with 

g(r)= e n2/4r - -  1 (61) 
i t =  - - o 0  

According to the phenomenological scaling theory described in 
Section 2, f ( s )  should have a scaling form on sufficiently long length and 
time scales. As can be easily deduced from the scaling form (28) of the 
magnetization, we should have 

f,s(S) = const.  [m (~ (=+2e/v)/x, ~(s t , ,  tjtL) (62) 

where o~ is related to the function ~c via 

Y ( a ,  p) = dO e ~oELr~(O, p)]  2 (63) 

Recalling that the exponent z + 2fl/v takes the value 4 - ~ for n = 0% we see 
that our result (59) has the anticipated form. We fix the nonuniversal scales 
as follows. First, we keep our previous choice (21c) of ti. Further, the 
amplitude of me(t) is normalized as in the bulk case; that is, we require 
that the scaling function ~c(Oi, p) one obtains through inversion of (63) 
reduces for p = 0  exactly to our previous result (56) for the bulk scaling 
function ~fbc. Finally, we wish to choose the time scale t L such that 
me(t) ~ e x p ( - t / t L )  for t >> t L >> ti. As we shall see, this leads to 

tL = L2/xo 2 (64) 

where Xo is the positive real zero of the function h(x). The so-defined finite- 
size linear relaxation time tL is d dependent on account of the d dependence 
of Xo, whose numerical values for 2 < d < 4  are depicted in Fig. 1. The d 
dependence is completely consistent with previous works (14'17) in which the 
relaxation time was calculated from the static correlation length. In 
particular, one obtains t r  ~ e ~/2 for e --, 0 + and tL ~ 1 / ( d -  2) for d ~  2 +. 

With this choice of nonuniversal factors the scaling function takes the 
form 

~ ( ~ ,  p)= F ( 2  -2J\-~oJe'](2P'] 
-1 +8/2 2/(2 - e) + 1/a 

(65) 
h(xo a/2p) 
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Fig. I. 
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Numer i ca l  resul t  for x 0 as a funct ion of d. The curve reflects the d dependence  of the 

inverse of the linear relaxation time: tL = LZ/xo 2. 

The backtransform of (65)--and hence the scaling function ~c- -cannot  
be represented in terms of standard functions. However, employing well- 
known results about Laplace transformations, (23) one can gain valuable 
analytic information about the asymptotic behavior of ~c(0i, p), both for 
small ~i as well as for large Oi. This in turn can be compared with the 
results of the phenomenologicat analysis presented at the end of Section 3. 
Crucial for the determination of the asymptotic behavior is the analytic 
structure of ~ ( a ,  p) at fixed p as a function of complex a. For our 
purposes here, it turns out sufficient to know that ~ is meromorphic in the 
right half-plane Re a > 0 and has a first-order pole at the real, positive root 
a.0 = 2p corresponding to the zero Xo of h(x= Xoa/2p). 

Consider first the limit ~9~ ~ 0 + at fixed p. The asymptotic form of the 
scaling function ~ ( 0 i ,  p) in this limit can be obtained from the ~r -~ ~ limit 
of ~ .  The latter function is regular in the half-plane Re a > ao and, as 
a ~ ~ in this region, behaves as 

~ ( a ,  p) ~ F(1 - 8/2) o --1 + ~ / 2 E l  @ O(po', 0")] (66) 

From the Laplace backtransform of the right-hand side of this equation we 
obtain the limiting form 

~c(~ge' P) s,~o+ 0~/4[-1 + O(p~i, ~9i)] (67) 

which is in accordance with the bulk result (56). Note that the limiting 
forms (66) and (67) are independent of p. However, the leading corrections 
include terms ocp, so that the width of the region in which the asymptotic 

822/73/1-2-2 
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Fig. 2. 

m 

1.2  

ill \ 

O 0 0 0 

O I ~ , i , ~ , , , , ~ , ~ - .  

1 2 3 4 5 6 

t / t  i 

The magnetization as a function of the scaled time, t / G  for d = 3 and various values 

of t i / t  L. 

behavior is observed shrinks as p increases beyond 1, i.e., as tL becomes 
smaller than ti. In Fig. 2 we present results for me(t) as a function of 
0~= t/t~ for various values of p = t/tL. These results, which were obtained 
by numerical Laplace inversion, bear out this shrinking. In accordance 
with our analytical result (67), they also show that me ~ t ~/4 as long as t is 
much smaller than ti and tL. This is again the initial-slip behavior, as 
expected from our phenomenological analysis. 

Consider next the other asymptotic case, ~9i--+ oe. In this limit the 
behavior of Y'c(0;, p) is governed by the pole a0 = 2p of o~, i.e., by the 
singularity farthest to the right of the Im o- axis. To see this, let a and b be 
two real numbers with 0 < a < ao < b, where a can be chosen arbitrarily 
close to zero. Within the strip a 4 Re a ~< b, the function ~ can be 
represented as a Laurent series 

o(p) 
~ ( o ,  p) - - -  + regular terms (68) 

a - 2p 

Here 

: / ( : -  +_ 1/:p 
(p(p) = \ 2/\Xo/ h'(xo) 

(69) 

where the prime denotes the derivative. The regular terms can be calculated 
but will not be important  for the asymptotic behavior considered. Further, 
when o - = o ' + i ~ "  with o-'e [a, b], then ~ tends uniformly to zero as 
a " ~  __oo. In computing the Laplace inversion S~~176 we 
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may therefore (23) deform the standard contour c g - - c g b : a = b + i a " ,  
- -  oo < a" < + ~ ,  into an analogous path go with a = a + ia" plus a closed 
contour that encircles the pole a0 once and has arbitrarily small diameter. 
The contribution from the closed contour dominates in the limit 0~---, 0% 
since the contribution from ego is smaller by a factor e -(~~ ,)o,. It follows 
that the scaling function Y'c behaves as 

~Oec(Oip ) ,.~ [q)(p)]-l/2 e-~176 ( 7 0 )  
~9 i ~ o o  

The implied asymptotic form of mc(t)  for large t may be written as 

mc(t  ) ,~ c o n s t . m ( i ) t ~ 4 [ 4 / ( 2 _ e ) + t L / t i ]  1/2 e t/tL (71) 
t ~ cto 

where the exponent e/4 of tL may again be recognized as the n = oo value 
of 0'. 

It should be emphasized that the limiting form (71) applies for all 
values of t i t  L as long as t >> tL. In other words, for such long times mc(t  ) 
decays exponentially, where the amplitude of the exponential depends on 
the ratio t i / t c  while its time scale--namely, the finite-size linear relaxation 
time tL---does not. In the limit t ] t L ~ O  (corresponding to case I of 
Section 3), all dependence contained in the amplitude drops out and (71) 
reduces to 

mc(t  ) ~ t~  B/vz e -t/tL (for t >> tL >> ti) (72) 

In the opposite limit t i l t  L ~ oo (corresponding to case II of Section 3), we 
find 

m c ( t ) ~ m ( e ) t ~  ='/'L (for t>> t~>> tL) (73) 

Hence the exponent 0' governing the bulk initial-slip behavior can also be 
deduced from the amplitude of the exponential in this asymptotic regime. 
For intermediate values of t t / tL the amplitude of the exponential displays 
a smooth crossover between the above two limiting forms. 

The numerical backtransforms me(t)  presented in Fig. 2 corroborate 
the analytical results derived in this section. In particular, they show the 
crossover at fixed t~/tr from the initial-slip behavior at short times to the 
exponential decay at long times. Likewise they visualize the crossover from 
bulk to finite-size behavior with the shrinking of the initial-slip regime as 
t~/tc increases. Thus for t i / tL=O.O1 the magnetization in Fig. 2 decays 
as t -1/4 in the regime 2 < t/ti<<. 6. As t i / tc  increases, the decay becomes 
more and more exponential, and the crossover from initial-slip to linear 
relaxation behavior is shifted to smaller values of t/te. 
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6. S U M M A R Y  A N D  C O N C L U S I O N S  

We considered the critical dynamics of finite systems evolving from 
a nonequilibrium state with initial values m ( t = O ) = m  (i) of the order 
parameter m(t). In order to describe the critical relaxation of the order 
parameter toward thermal equilibrium for times t long compared to the 
microscopic scale tmic, we developed a scaling theory into which the initial 
condition m(0) = m (~ is properly built. If the relaxation process takes place 
directly at the bulk critical point T- -To ,  H =  0, so that the bulk linear 
relaxation time t~ ~ r w is infinite, then the theory involves two charac- 
teristic time scales: the usual finite-size linear relaxation time t/, ,-~ L ~ and 
an initial-value time t i~  [ml~ -~/x~. The important point is that x~, the 
scaling dimension of m (~ is an independent scaling index that, in general, 
differs from the scaling dimension xr = fl/v o f  the equilibrium bulk order 
parameter, as was first shown by Janssen et al. in their pioneering work (v) 
on critical relaxation in bulk systems. 

Previous theories of critical relaxation in finite systems either focused 
from the outset on the regime t ~> t~ in which all dependence on the initial 
condition has faded away, or tacitly assumed that x~= xr As a conse- 
quence, the time regime tmi c ,~ t < t~ with universal dependence on the initial 
condition was missed or incorrectly treated. 

We investigated the problem first by formulating a phenomenological 
scaling theory and then corroborated the general aspects of our findings 
through an explicit solution of the time-dependent n-component Ginzburg 
Landau model with nonconserved order parameter in the many-component 
limit n--* oe. This model was well suited for our purposes since the 
necessary calculations could be carried out mostly analytically but never- 
theless yielded nontrivial results which one expects to subsist qualitatively 
also for the general n-vector model. 

The fact that the exponent 0'= (x~-x~) / z  is positive rather than zero 
led to nontrivial short-time behavior of the order parameter for tmi c ~ t ~ t~, 
as well as to interesting crossover effects. In the regime tmi c .~ t "~ t i "~ t L we 
recovered the expected initial-slip behavior m(t),,~ t o' known from Janssen 
et aL's bulk analysis. For  t >> tL ~ tmic w e  found the usual exponential decay 
m(t ) , ,~exp( - t / tL )  of finite-size linear relaxation behavior. However, the 
amplitude of the exponential turned out to depend on the initial value m (~ 
and to vary in an interesting fashion as the ratio ti/tL is changed. As can 
be read off from the limiting forms (72) and (73), the amplitude crosses 
over from a dependence of the form ,,~m(~ ~ for t i ~ t L  to a behavior 

t J / ~  for t; >> tL. These results clearly indicate that the process of critical 
relaxation in finite systems is much richer that previously thought. Of 
course, the various types of asymptotic behaviors predicted above call for 
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detailed verification by means of Monte Carlo simulations such as in 
ref. 24. 

There are several obvious directions in which our work should be 
extended. First, the analysis should also be carried out for the general 
n-vector model. The way to do this is to integrate out the q ~ 0 modes to 
some finite order of renormalization-group improved perturbation theory. 
This procedure leads to a nonlinear stochastic differential equation for the 
spatially constant mode which can be solved numerically. (15'17) Second, 
other boundary conditions should be considered. For example, one might 
take free boundary conditions on the faces bounding the system in one or 
several principal directions while keeping periodic boundary conditions 
along the remaining directions. As a natural further generalization one 
would like to allow surface magnetic fields and modified (either enhanced 
or weakened) bonds on the bounding surfaces. Moreover, one would like 
to consider other geometries and topologies such as film geometries or 
finite systems with curved boundaries. Last but not least, more complicated 
models belonging to other universality classes of critical dynamics should 
be investigated. 
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